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ABSTRACT
This paper introduces and explores an expanded version of the conventional Gumbel
type II distribution, referred to as the Weibull-Gumbel type II distribution. Char-
acterized by a singular scale parameter and three shape parameters, this innovative
lifetime distribution is subjected to a comprehensive analysis, employing the max-
imum product of spacing method for parameter estimation. The study utilizes two
real-life datasets to showcase the adaptability and versatility of the Weibull-Gumbel
type II distribution. Assessment based on log-likelihood and information statistics
values from both estimation methods reveals that this distribution offers a superior
fit to the data when compared to alternative distributions. Furthermore, a simu-
lation study confirms the consistency of the parameters. Given these results, the
Weibull-Gumbel type II distribution is recommended as an effective model for the
accurate representation of lifetime data

KEYWORDS
Weibul-Gumbel type II, maximum product of spacing, monotonic decreasing and
increasing shapes, Monte Carlo simulation, binomial expansion

1. Introduction

Numerous statistical distributions have been recently devised and investigated in schol-
arly literature. Despite the emergence of these new distributions, there remains a need
for models that align with current circumstances, underscoring the continuous explo-
ration in this domain. By incorporating flexibility into basic probability distributions
to accommodate unique real-world events, the potential for broader applications of
these new models is heightened. This inclination has motivated researchers to concen-
trate on the development of novel, adaptable distributions. Various methods to extend
standard probability distributions have been proposed in the literature. One prevalent
approach involves the use of distribution generators, exemplified by the exponentiated
family of distributions introduced by Nadarajah and Kotz [10], the Kumaraswamy
generalized family of distributions by Cordeiro and De Castro [6], and the Weibull-G
family of distributions explored by Bourguignon et al. [5]. Additional contributions
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include the Topp-Leone generalized family of distributions by Al-Shomrani et al. [1],
the exponentiated extended generalized family of distributions by Elgarhy et al. [7],
the Power Lindley generalized family of distributions by Hassan and Nassr [9], and
others, as enumerated in the subsequent citations. In the context of extreme values,
such as the maximum or minimum of a large set of independently distributed random
variables, the Gumbel type II (GuTII) distribution, also known as the extreme value
type II distribution, is commonly employed. Its probability density function (pdf) and
cumulative distribution function (cdf) serve to define it as follows:

G(x) = e−θx−σ

(1)

g(x) = σθx−σ−1e−θx−σ

(2)

The Gumbel type II (GuTII) distribution stands as a valuable model within extreme
value theory, finding applications in fields such as seismology and meteorology where
it is employed to simulate extreme events. “This distribution proves beneficial in risk
management, operational risk, and life testing, particularly when characterizing life-
time datasets exhibiting monotonic failure rates. However, a notable limitation arises
when dealing with the majority of complex events observed in practical scenarios,
as they often exhibit non-monotonic behavior. To address this limitation, the GuTII
distribution is combined with the Weibull-G family of distributions to enhance flexi-
bility and improve fitting. To enhance the fit of the GuTII distribution, Okorie et al.
[12] proposed and investigated an exponentiated form of the GuTII distribution of
Lehman type I. Ogunde et al. [11] extended the GuTII distribution using a generalized
exponentiated-G distribution, leading to Lehman type I and type II GuTII distribu-
tions. Additionally, Okorie et al. [13] explored the characteristics of the Kumaraswamy-
G Exponentiated GuTII distribution. In the realm of statistical representation, the
Weibull distribution has been widely employed over the past few decades in fields such
as dependability, engineering, and biological studies. Gurvich et al. [8] expanded the
traditional Weibull model to encompass a broader family of univariate distributions.
Bourguignon et al. [5] delved into the exploration of this expanded family, termed
the Weibull-G family of distributions, providing insights into its mathematical char-
acteristics. This approach, involving the addition of extra shape parameters to the
standard distribution, offers a useful means of enhancing resilience and flexibility. The
cumulative distribution function (cdf) and probability density function (pdf) of the
Weibull-G family of distributions are provided as part of this exploration.

F (x) = 1− e
−α

[
G(x)

1−G(x)

]β
(3)

f(x) = αβg(x)
[G(x)]β−1

[1−G(x)]β+1
e
−α

[
G(x)

1−G(x)

]β
(4)

This work aims to generalize the classical GuTII distribution to a wider class of dis-
tribution in order to improve its performance and fit, and also promote its usefulness
in modeling various complicated data sets.

2. Weibull-Gumbel Type II (WGuTII) distribution

In this segment, a novel continuous probability density function (pdf) known as the
Weibull-Gumbel Type II distribution is introduced. Plots depicting the pdf, cumu-
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lative distribution function (cdf), survival function, and hazard rate function (hrf)
are presented to evaluate the characteristics of this newly developed distribution. The
cumulative distribution function (cdf) for the Weibull-Gumbel Type II (WGuTII)
distribution is derived by substituting equation (1) into equation (3), resulting in:

F (x) = 1− e
−α


e−θx−σ

1−e−θx−σ

β

(5)

Also, the pdf of WGuII distribution is obtained by inserting (2) into (4) as:

f(x) = αβσθx−σ−1e−θx−σ

[
e−θx−σ

]β−1

[1− e−θx−σ ]
β+1

e

−α




e−θx−σ

1− e−θx−σ




β

(6)

where x ≥ 0, α, θ > 0 are the scale parameters and α, β > 0 are the shape parameters
respectively.

Figure 1. cdf plots of WGuTII distribution with different parameter values

3
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Figure 2. pdf plots of WGuTII distribution with different parameter values

3. Density Expansion

In this section the pdf in (6) is expanded using binomial expansion. This is obtained
a follows:

f(x) = αβσθx−σ−1e−θx−σ

[
e−θx−σ

]β−1

[1− e−θx−σ ]
β+1

e

−α




e−θx−σ

1− e−θx−σ




β

=

∞∑
i=0

(−1)i(α)i

[
e−θx−σ

1− e−θx−σ

]βi

(7)

[
1− e−θx−σ

]−(β(1+i)+1)
=

∞∑
j=0

(−1)j
(

−(β(1 + i) + 1)
j

)
[e−θx−σ

]j (8)

4
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On combining (7) and (8) together then substituting back to (6), we have

f(x) = αβσθx−σ−1
∞

i,j=0

(−1)i+j(−α)i


−(β(1 + i) + 1)
j


[e−θx−σ

]β(i+1)+j (9)

In the same vain, (5) is expanded as follows

[F (x)]h =


1− e−α


e−θx−σ

1− e−θx−σ

β


h

(10)


1− e−α


e−θx−σ

1− e−θx−σ

β


h

=

h
k=0

(−1)k


h
k


e
−α

[
e−θx−σ

1−e−θx−σ

]βk

(11)

e
−αk

[
e−θx−σ

1−e−θx−σ

]β

=

∞
p=0

(−1)p(αk)p


e−θx−σ

1− e−θx−σ

βp

(12)


1− e−θx−σ

−βk
=

∞
q=0

(−1)q


−βk
q


e−θx−σ

q
(13)

On combining (11),(12) and (13) then substituting back to (10), we have

[f(x)]h =

∞
p,q=0

h
k=0

(−1)k+p+q(−αk)p


−βk
q


h
k


e−θx−σ

q
(14)

4. Properties of WGuTII distribution

In this segment, our examination focuses on the statistical properties of the WGuTII
distribution, with a specific emphasis on the survival function, hazard function, quan-
tile function, moments, and moment-generating function.

4.1. Reliability (Survival) function

R(x) = e
−αk

[
e−θx−σ

1−e−θx−σ

]β

(15)

5
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Figure 3. Survival function plots of WGuTII distribution with different parameter values

4.2. Hazard Function

H(x) = αβσθx−σ−1e−θx−σ

[
e−θx−σ

]β−1

[1− e−θx−σ ]
β+1

(16)

4.3. Quantile Function

Quantile function has a significant position in probability theory and it is the inverse
of the cdf. The quantile function is obtained using

Q(u) = F−1(u)

using the inverse of equation (5), we have the quantile function give as

x = Q(u) =

{
−1

θ
log

[
log(1− u)

log(1− u)− αβ

]−1

σ

}
(17)

6
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Figure 4. Hazard function plots of WGuTII distribution with different parameter values

4.4. Moment

Here, we consider the rth moment for WGuTII distribution. Moments are important
features in any statistical analysis, especially in applications. They can be used to
study the characteristics of a distribution, e.g., dispersion, skewness, and kurtosis.

E(Xr) =

∫ ∞

0
xrf(x)dx (18)

E(Xr) = αβσθx−σ−1
∞∑

i,j=0

(−1)i+j(−α)i
(

−(β(1 + i) + 1)
j

)∫ ∞

0
xr[e−θx−σ

]β(i+1)+jdx

(19)

E(Xr) =

∫ ∞

0
xr[e−θx−σ

]β(i+1)+jdx (20)

Let

(β(i+ 1) + j)θx−δ =⇒ x =

[
y

(β(i+ 1) + j)θ

]−1

δ

dx =
dy

δ(β(i+ 1) + j)θx−δ−1

7
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∫ ∞

0

[
y

(β(i+ 1) + j)θ

]−1

δ

e−y dy

δ(β(i+ 1) + j)θx−δ−1
=

∫ ∞

0
y

−r

δ e−ydy

∫ ∞

0
y

−r

δ e−ydy = Γ
(
1− r

δ

)

E(Xr) = αβθ
r

σ [β(i+ 1) + j]
r

σ
+1

∞∑
i,j=0

(−1)i+j(−α)i
(

−(β(1 + i) + 1)
j

)
Γ
(
1− r

σ

)

(21)
The mean of WGuTII distribution is obtained by setting r = 1 in (21)

E(X) = αβθ
1

σ [β(i+ 1) + j]
1

σ
+1

∞∑
i,j=0

(−1)i+j(−α)i
(

−(β(1 + i) + 1)
j

)
Γ

(
1− 1

σ

)

(22)

4.5. Moment generating function

M(x)(t) =

∫ ∞

0
eixf(x)dx (23)

since the series expansion for eix is given as

eix =

∞∑
w=0

(tx)w

w!
(24)

M(x)(t) = αβθ
w

σ [β(i+1)+j]
w

σ
+1

∞∑
w=0

(tx)w

w!

∞∑
i,j=0

(−1)i+j(−α)i
(

−(β(1 + i) + 1)
j

)
Γ
(
1− w

σ

)

(25)

4.6. Order Statistics

Let X1, X2, . . . , Xn be n independent random variable from the WGuTII distributions
and let X(1) ≤ X(2) ≤ . . . ≤ X(n) be their corresponding order statistic. Let Fr,n(x)
and fr,n(x), r = 1, 2, 3, . . . , n denote the cdf and pdf of the rth order statistics Xr,n(x)
respectively. The pdf of the rth order statistics of Xr,n(x) is given as

fr,n(x) =
f(x)

B(r, n− r + 1)

n−r∑
v=0

(−1)v
(

n− r
v

)
F (x)v+r−1 (26)

8
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The pdf of rth order statistic for distribution is obtained also replacing h with v+r−1
in cdf expansion. we have

fr,n(x) = nαβσθx−σ−1 1

B(r, n− r + 1)

∞∑
i,j,p,q=0

n−r∑
v=0

v+r−1∑
k=0

(−1)v+i+j+k+p+q

(−α)i(−αk)p
(

(−β(i+ 1) + 1)
j

)(
n− r
v

)(
−βk
q

)(
v + r − 1

k

)

[
e−θx−σ

]β(i+1)+j+q
(27)

The pdf of minimum order statistic of the distribution is obtained by setting r = 1

f1,n(x) = nαβσθx−σ−1
∞∑

i,j,p,q=0

n−1∑
v=0

v∑
k=0

(−1)v+i+j+k+p+q(−α)i(−αk)p

(
(−β(i+ 1) + 1)

j

)(
n− 1
v

)(
−βk
q

)(
v
k

)

[
e−θx−σ

]β(i+1)+j+q
(28)

Also, the pdf of maximum order statistic of the distribution is obtained by setting
r = n

fn,n(x) = nαβσθx−σ−1
∞∑

i,j,p,q=0

v+n−1∑
k=0

(−1)v+i+j+k+p+q(−α)i(−αk)p

(
(−β(i+ 1) + 1)

j

)(
−βk
q

)(
v + n− 1

k

)

[
e−θx−σ

]β(i+1)+j+q
(29)

5. Parameter Estimation

This section provides estimation method to estimate the unknown parameters of
WGuTII distribution. The methods used to estimate the parameters is maximum
product spacing estimation methods.

5.1. Maximum Product Spacing Estimation (MPS)

Let x1, x2, . . . , xn be a random samples from the WGuTII distribution having cdf
F (x;σ, α, θ, β) and x1, x2, . . . , xn represents the corresponding ordered sample. The
spacing

Ψi = F (x(i))− F (x(i−1)) for i = 1, 2, . . . , n+ 1

9
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where F (x(0)) = 0 and F (x(n+1)) = 1. Therefore,

F (x(i);σ, α, θ, β) = 1− e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β

(30)

and

F (x(i−1);σ, α, θ, β) = 1− e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β

(31)

Thus,

Ψi =







1− e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β


−



1− e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β







(32)

The parameter estimates are obtained by maximizing

Ω(x;σ, α, θ, β) =
1

n+ 1

n
i=1

logΨi

Ω(x;σ, α, θ, β) =
1

n+ 1

n
i=1

log






1− e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β


−



1− e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β






(33)
Differentiating Ω with respect to individual parameters yields the parameter estimates
of σ̂MPS , α̂MPS , θ̂MPS , β̂MPS and solving the non-linear equations, we have

∂Ω(x;σ, α, θ, β)

∂σ
=

1

n+ 1

n+1
i=1

1

Ψi
[K1(x(i);σ, α, θ, β)−K2(x(i−1);σ, α, θ, β)] (34)

where

K1(x(i);σ, α, θ, β) =
e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β

e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β−1

θe−θx−σ
(i) x(i) lnx(xi)


1− e−θx−σ

(i)


+ e−θx−σ

(i)



1− e

−α




e−θx−α
(i)

1− e−θx−α
(i)




β


1− e−θx−α

(i)

2

10
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and

K2(x(i−1);σ, α, θ, β) =
e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β

e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β−1

θe−θx−σ
(i−1)x(i−1) lnx(xi)

[[
1− e−θx−σ

(i−1)

]
+ e−θx−σ

(i−1)

]

1− e

−α




e−θx−α
(i−1)

1− e−θx−α
(i−1)




β

[
1− e−θx−α

(i−1)

]2

∂Ω(x;σ, α, θ, β)

∂θ
=

1

n+ 1

n+1∑
i=1

1

Ψi
[P1(x(i);σ, α, θ, β)− P2(x(i−1);σ, α, θ, β)] (35)

where

P1(x(i);σ, α, θ, β) =
e

−α




e−θx−σ
(i)

1− e−θx−σ
(i)




β

e

−σ




e−θx−σ
(i)

1− e−θx−σ
(i)




β−1

θe−θx−σ
(i) x(i) lnx(xi)

[[
1− e−θx−σ

(i)

]
+ e−θx−σ

(i)

]

1− e

−α




e−θx−σ
(i)

1− e−θx−σ
(i)




β

[
1− e−θx−σ

(i)

]2

and

P2(x(i−1);σ, α, θ, β) =
e

−α




e−θx−σ
(i−1)

1− e−θx−σ
(i−1)




β

e

−α




e−θx−σ
(i−1)

1− e−θx−σ
(i−1)




β−1

θe−θx−σ
(i−1)x(i−1) lnx(xi)

[[
1− e−θx−σ

(i−1)

]
+ e−θx−σ

(i−1)

]

1− e

−α




e−θx−σ
(i−1)

1− e−θx−σ
(i−1)




β

[
1− e−θx−σ

(i−1)

]2

∂Ω(x;σ, α, θ, β)

∂β
=

1

n+ 1

n+1∑
i=1

1

Ψi
[P1(x(i);σ, α, θ, β)− P2(x(i−1);σ, α, θ, β)] (36)

where

M1(x(i), σ, α, θ, β) =

e

−α




e−θx−σ
(i)

1− e−θx−σ
(i)




β

− α log

[
e−θx−σ

(i)

1− e−θx−σ
(i)

]

1− e

−α




e−θx−σ
(i)

1− e−θx−σ
(i)




β

11
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and

M2(x(i−1), σ, α, θ, β) =

e

−α




e−θx−σ
(i−1)

1− e−θx−σ
(i−1)




β

− α log

[
e−θx−σ

(i−1)

1− e−θx−σ
(i−1)

]

1− e

−α




e−θx−σ
(i−1)

1− e−θx−σ
(i−1)




β

∂Ω(x;σ, α, θ, β)

∂α
=

1

n+ 1

n+1∑
i=1

1

Ψi
[Q1(x(i);σ, α, θ, β)−Q2(x(i−1);σ, α, θ, β)] (37)

The MPS are obtained by setting equations above to zero and solving these equations
simultaneously. Thus, these cannot be solved analytically, necessitating the use of
analytical tools to solve them numerically.

6. Simulation and Applications

6.1. Monte-Carlo Simulation

This section presents Monte-Carlo simulation study to investigate the effect of sample
size on the MPS of the parameters of the WGuTII distribution and further to assess
the stability of these parameters. Different sample sizes (20, 50, 100, 250, 500, and
1000) were drawn from the WGuTII distribution with parameters β = 1.0, α = 1.0,
θ = 2.5, σ = 1.0 using (17) where each sample was replicated 10000 times. Using the
simulated random variables we estimate the parameters of the WGuTII distribution
through the methods of MPS and the procedure was repeated 10000 times for each
sample size. The corresponding bias and root mean square errors (rmse) of each of the
parameter estimates are tabulated in Table 1.

6.2. Applications to real-life data sets

In this section we would fit the WGuTII distribution to two real-life data sets to
demonstrate its applicability and flexibility. The goodness of fit of WGuTII distribu-
tion would be compared three models comprising the baseline distribution, namely,
Exponentiated GuTII (EGuTII) distribution, GuTII distribution and Weibull distri-
bution. The model comparison would be based on the minimized log-likelihood esti-
mate and the following information statistics: Akaike information criterion (AIC) and
Bayesian information criterion (BIC). The model with the smallest minimized log-
likelihood and information statistics value is the best. The first data set consists of
108 observations, representing the COVID-19 mortality rates in Mexico from 4 March
to 20 July 2020. This dataset has been used by Almongy et al. [2] and also used by
Arif et al. [3]. The data set is provided as follows: 8.826, 6.105, 9.391, 14.962, 10.383,
7.267, 13.220, 16.498, 11.665, 6.015, 10.855, 6.122, 6.656, 3.440, 5.854, 10.685, 10.035,
5.242, 4.344, 5.143, 7.630, 14.604, 7.903, 6.370, 3.537, 6.327, 4.730, 3.215, 9.284, 12.878,
8.813, 10.043, 7.260, 5.985, 6.412, 3.395, 4.424, 9.935, 7.840, 9.550, 3.499, 3.751, 6.968,
3.286, 10.158, 8.108, 6.697, 7.151, 6.560, 2.077, 3.778, 2.988, 3.336, 6.814, 8.325, 7.854,
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Table 1. Monte-Carlo simulation results of the parameter estimates using MPS together with their Bias and
RMSE of the WGuTII distribution.

n Parameter Estimated Values Bias RMSE
20 β 1.0698 0.0698 0.3917

α 1.1572 0.1572 0.3959
θ 2.5318 0.0318 0.7081
σ 1.9501 0.9501 0.2976

50 β 1.0575 0.0575 0.2860
α 1.1584 0.1584 0.3242
θ 2.5275 0.0275 0.5930
σ 1.4109 0.4109 0.2345

100 β 1.0698 0.0698 0.3917
α 1.0423 0.0423 0.2230
θ 2.5342 0.0342 0.4487
σ 1.2469 0.2469 0.1781

250 β 1.0252 0.0252 0.1342
α 1.1138 0.1138 0.1940
θ 2.5456 0.0456 0.3255
σ 1.1554 0.1554 0.1176

500 β 1.0129 0.0129 0.0924
α 1.0973 0.0973 0.1686
θ 2.5499 0.0499 0.2361
σ 1.1130 0.1130 0.0846

1000 β 1.0059 0.0059 0.0616
α 1.0720 0.0720 0.1279
θ 2.5433 0.0433 0.1704
σ 1.0101 0.0101 0.0566
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8.551, 3.228, 7.486, 6.625, 6.140, 4.909, 4.661, 5.392, 12.042, 8.696, 1.815, 3.327, 5.406,
6.182, 1.041, 1.800, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500,
6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027,
2.352, 1.205, 3.218, 2.926, 2.601, 2.065, 3.029, 2.058, 2.326, 2.506, 1.923. The second
data set represents the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by Bjerkedal [4]. The data are given as: 0.1,
0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08,
1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39,
1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,
2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42,
3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

Table 2. The models’ MPSs and performance requirements based on data set 1

Models β̂ θ̂ α̂ σ̂ ll AIC BIC
WGuTII 1.537 3.833 2.365 0.723 -261.173 530.346 541.000
EGuTII - 9.547 121.623 0.374 -263.728 533.638 541.628
GuTII - 8.207 - 1.617 -273.819 551.638 556.965
W - 0.033 - 1.849 -265.451 535.838 541.165

Table 3. The models’ MPSs and performance requirements based on data set 2

Models β̂ θ̂ α̂ σ̂ ll AIC BIC
WGuTII 4.005 0.948 1.880 0.296 -95.338 198.672 207.779
EGuTII - 8.362 1280.776 0.237 -97.902 201.804 208.634
GuTII - 1.048 - 1.130 -118.351 240.702 245.255
W - 0.301 - 1.721 -99.857 203.714 208.267

7. Discussion of Results

The configuration of the novel model can exhibit either a unimodal shape or mono-
tonic decreasing and increasing shapes. Symmetry and considerable tail variability
are observable in Figure 1. The hazard rate function may manifest as unimodal,
bathtub-shaped, or inverted bathtub-shaped, contingent upon the values of the shape
parameters. The appealing shape characteristics of the new model suggest that the
Weibull-Gumbel type II (WGuTII) distribution is well-suited for modeling datasets
with non-monotonic hazard rate behaviors frequently encountered in real-life scenar-
ios. The Monte Carlo simulation results in Tables 1 reveal that, as the sample size
increases, the parameters of the WGuTII distribution approach the true values, with
a simultaneous decrease in bias and root mean square error (RMSE). The diminishing
bias and RMSE with increasing sample size indicate improved accuracy in parame-
ter estimation. The outcomes of the model fittings, as presented in Tables 1, 2 and
3 demonstrate that the WGuTII distribution exhibits the best fit for the considered
datasets. This conclusion is drawn based on its minimal log-likelihood and informa-
tion statistics values. Figures 5 depict the empirical and theoretical probability den-
sity function (pdf), cumulative density function (cdf), quantile-quantile (Q-Q), and
probability-probability (P-P) plots for the estimated distribution of dataset 1, while
Figures 6 display the corresponding plots for dataset 2. The close alignment between
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Figure 5. Fitted plots of pdf, cdf, Q-Q and P-P plots for data set 1
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Figure 6. Fitted plots of pdf, cdf, Q-Q and P-P plots for data set 2
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the WGuTII distribution and the empirical data in Figures 5 and 6 indicates the
suitability of the model for accurately representing the datasets.

8. Conclusion

This paper presents the Weibull-Gumbel type II distribution, a novel lifetime distri-
bution that serves as a generalization of the standard Gumbel type II distribution.
The paper provides explicit mathematical expressions for key statistical properties,
including the probability density function, cumulative density function, rth moment,
moment generating function, survival function, hazard function, quantile function, and
both the minimum and maximum order statistics of this new distribution. The study
employs two parameter estimation methods, namely maximum likelihood estimation
and maximum product of spacing estimation, to determine the values of the unknown
parameters. To showcase the adaptability and versatility of the newly introduced life-
time distribution, the authors utilize two real-life datasets. The results of the analysis
indicate that, when compared to other related distributions, the Weibull-Gumbel type
II distribution offers the most optimal fit. In conclusion, the paper recommends the
adoption of the Weibull-Gumbel type II distribution as a robust model for addressing
complex datasets. The authors express optimism regarding its potential for significant
applications in the future.
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